Caroline Lemieux — Research Statement

As software becomes more pervasive in all aspects of society, the consequences of bugs and other
software defects have become all the more severe. The Consortium for IT Software Quality estimated
that in 2018, the cost of poor software quality amounted to $2.84 trillion in the US aloneE] In my
research, I work to alleviate these costs by building tools that help developers improve the correctness,
security, and performance of software.

A recently successful class of such tools, especially for improving security, are fuzz testers. Fuzz
testing uses random search methods to find bug-inducing inputs in software. These inputs help
developers reproduce bugs and reason about their root causes. Modern fuzz testing tools have been
successfully applied to a broad array of programs: Google’s OSS-Fuzz project alone has found over
20,000 bugs in 300 open source projectsE]

In my PhD research, I developed algorithmic innovations to fuzz testing in order to consistently
find correctness and performance issues in software. These innovations are over three main dimensions:

1. Coverage-guided fuzz testing does not consistently find performance and resource consump-
tion errors, even though attackers can exploit these to deploy denial-of-service attacks. I developed
a multi-objective maximization search algorithm that readily finds such bugs.

2. Mutational fuzz testing is great at stress-testing input validation, but rarely generates structurally-
sound inputs that explore the core logic of programs. I developed algorithms to filter mutations
and obtain higher-level mutations which generate more structurally-sound inputs.

3. Generator-based fuzz testing, which uses a hand-written input generator to create inputs, ties its
search to a particular input distribution. I developed methods to automatically adapt these
distributions to the program under test, and even used these methods to tackle program synthesis.

PerfFuzz[3] and FuzzFactory[6] find performance bugs which other fuzzers are simply unable to find.
FairFuzz[4] explores programs more deeply without any extra user effort; Zest[5] smartly leverages
user-written generators to find bugs in core program logic. RLCheck[7] uses reinforcement learning to
find valid inputs even faster. AutoPandas’[2] generator-based approach introduced a new paradigm
for program synthesis tools. My research has won a Distinguished Paper Award, Distinguished
Artifact Award, Tool Demonstration Award, and Best Paper Award (Industry Track).

Going forward, I will follow two key directions to expand my research. In the short term, I will
build tools that reduce the upfront costs of fuzz testing, and allow developers to deploy it in their day-
to-day development activities. This will require innovations in programming languages and software
engineering topics beyond fuzz testing algorithms. In the longer term, I will target software which
cannot be handled by modern fuzzing tools—including distributed systems, mobile applications, and
deep learning systems—and, in the process, develop new notions of “test-input generation” for
today’s hardest programming tasks.

Improving Coverage-Guided Mutational Fuzzing

Modern coverage-guided mutational fuzzing (CGF) tools—AFL, libFuzzer, honggfuzz—have
improved the quality of many widely-used software projects. While the well-known Heartbleed bug was
present in public version of OpenSSL for two years before it was ﬁxedE] the only critical vulnerability
to date found in OpenSSL was found by CGF a day after it was released, and fixed two days laterE]
Although this second vulnerability was potentially more severe than Heartbleed, thanks to the adoption
of CGF, it had no remarkable security impacts.

IThe Cost of Poor Quality Software in the US: A 2018 Report (p. 5)
2https://github.com/google/oss-fuzz

Shttps://www.openssl.org/news/secadv/20140407 . txt, https://www.openssl.org/source/old/1.0.1/
4https://www.openssl.org/news/secadv/20160926. txt

https://github.com/google/oss-fuzz
https://www.openssl.org/news/secadv/20140407.txt
https://www.openssl.org/source/old/1.0.1/
https://www.openssl.org/news/secadv/20160926.txt

Page 2 of Caroline Lemieux — Research Statement

CGF’s main innovations are (1) a pseudo-genetic algorithm for input generation which (a) uses
byte-level mutation operations to create new inputs and (b) determines the fitness of inputs by whether
they achieve new coverage; as well as (2) low-overhead instrumentation in order to quickly collect this
coverage feedback. Paired with an efficient, empirically-verified implementation, this method enabled
CGF to scale to many large software projects.

Generalizing Fuzzer Guidance: Finding Resource Consumption Errors

CGPF relies on branch coverage to guide its bug-finding. Branch coverage tracks, for each conditional
statement in the program, which side (branch) of the statement was exercised (covered) by an input.
As it prioritizes broad program exploration, this signal is not helpful for finding performance or out-
of-memory errors. Unfortunately, these errors can have serious security implications: an attacker can
cause a denial-of-service attack by sending inputs that consume a huge amount of compute resources.

Prior state-of-the-art tried to use fuzzing to find such inputs by aiming to maximize a single
performance objective. However, I observed they never got to the true worst case because they got
stuck at inputs that hit a local maxima in their performance objective. In PerfFuzz [3], I introduced
a multi-objective maximizing search algorithm which overcame this problem. Thanks to this, PerfFuzz
was able to find inputs that exemplified the worst-case algorithmic complexity of several programs:
quadratic blowup in (1) a regex library, (2) a linked-list hash table, and (3) error processing in an
XML parser. PerfFuzz won a Distinguished Paper Award at ISSTA’18.

We can use this multi-objective algorithm for many other tasks: for example, to find inputs that
maximize memory allocated at memory allocation locations. Or, to find inputs that get through
if statements with strict equality conditions—a real challenge for CGF which produces inputs by
byte-level mutations—, by maximizing the number of bits matched for each equality condition. In
FuzzFactory [0] we generalized PerfFuzz so it could explore combinations of these objectives. This
enabled us to create a fuzzer that consistently found new memory usage “bombs” (e.g. a 21-byte input
causing a 4GB memory allocations) in previously heavily-fuzzed software like libarchive.

Mutating to Retain Structure: Exploring Core Logic

Because CGF models inputs as byte-sequences (e.g., files, standard input), its mutations can easily
corrupt high-level input structure. CGF’s typical mutations include flipping random bytes, duplicating
sequences of bytes, setting bytes to 0. So, CGF might produce the mutant <a>b</b from <a>b,
ruining the XML format. Such structurally unsound inputs cannot exercise the core logic of software.

In FairFuzz [4], I introduced the concept of a mutation mask, which specifies which bytes of an
input can be mutated while still exercising important parts of the program. FairFuzz automatically—
i.e., without user input—computes this mask and decides on which parts of the program to target.
FairFuzz achieved up to 10.6% higher branch coverage (a common metric for testing effectiveness) than
state-of-the-art, and continues to be popular in the fuzzing community. Users actively inquired about
its integration into AFL—H—EI because “in [their] tests, its approach was very effective [emphasis
added]”, and said that best practice involves using FairFuzz in a fuzzing deploymentﬂ

However, for highly-structured inputs, e.g., XML documents, FairFuzz remains unlikely to mutate
an input in a sound and significant manner, e.g., adding a child or attributes to an existing element.
To tackle this problem, we looked to another branch of modern fuzzing.

Shttps://github.com/AFLplusplus/AFLplusplus/issues/18
Bhttps://github.com/AFLplusplus/AFLplusplus/issues/258#issuecomment-599226036

https://github.com/AFLplusplus/AFLplusplus/issues/18
https://github.com/AFLplusplus/AFLplusplus/issues/258#issuecomment-599226036

Page 3 of Caroline Lemieux — Research Statement

Automatically Adapting Distributions of Random Input Generators

Unlike CGF, which produces inputs via mutation, gemerator-based fuzzing produces inputs by
repeatedly calling a generator. Generator-based fuzzing is the backbone of commercial fuzzing tools
such as Peach, beStorm, Defensics, and Codenomicon. A generator uses calls to some source of
randomness to produce a different element from the space of inputs each time it is called. Generators
are a natural way for developers to describe a search space of inputs. However, they also couple a
particular—often non-optimal for testing—probabilistic distribution with this search space.

In Zest [5], we brought together generator-based fuzzing and CGF. We observed that small changes
in the values returned by the generator-consumed source of randomness resulted in small changes to
the generator-returned input. Zest replaced the source of randomness with a controllable stream of
“random” numbers. Zest then performed CGF by mutating this stream of numbers, rather than the
generator-produced input, so the inputs Zest generated were always well-structured. As such, Zest was
able to find bugs in the core logic stages of programs, like a logic error in the code optimization stage
of the Google Closure compiler. Zest won a Distinguished Artifact Award at ISSTA’19.

RLCheck [7], rather than mutating the stream of random numbers to control the distribution from
which inputs are drawn, explicitly controls the distribution from which inputs are drawn. In particular,
it replaces uses of the source of randomness in the generator with abstract “choice” operators. These
operators are backed by reinforcement learning agents, which learn over time which choices are likely
to result in the production of a new valid input. RLCheck rewards these agents using only return
codes from the program, rather than coverage information, enabling it to find orders-of-magnitude
more unique valid inputs than Zest in the same time frame.

I have leveraged generator-based search to solve other, non-testing, search problems. Notably,
program synthesis: given an input-output example (1,0), we can use a program generator to generate
random programs until we find the program p such that p(I)=0. AutoPandas [2], our synthesis
engine for the Python library pandas, introduced this type of generator-based synthesis. It achieves
good performance by specializing the distribution of the generator automatically, replacing random
choices with a neural network trained to return choices likely to result in a program p such that p(1)=0.
This paradigm allows us to build synthesis engines without building specialized pruning strategies.

Future Work

Looking forward, I see two main directions to pursue in order to radically improve software quality.
In the short term, I will help automate the tasks which currently prevent everyday developers from
using modern fuzz testing tools. In the long term, I want to target software which does not fit into
fuzz testing’s notion of a “test program”— short-running, sequential, taking in a single controllable
input. I will investigate new notions of test-input generation that will help developers cope with the
challenges of distributed systems, mobile applications, and deep learning.

Short Term: Reducing Upfront Costs of Fuzz Testing

In spite of its bug-finding power, fuzz testing is still used primarily as a quality assurance tool for
particularly widely-used libraries, rather than a universal tool to help developers improve the quality
of code. Upfront costs such as building test drivers, writing specifications of input structure, and
understanding fuzzer-found bugs still prevent the wide adoption of fuzzing.

My work on automating test driver creation in FUDGE [I] shows the clear advantage in reducing
these costs: over 200 FUDGE-generated drivers were upstreamed into open source libraries, and
enabled 150 security-improving fixes. FUDGE generated these drivers by pairing a large-scale

Page 4 of Caroline Lemieux — Research Statement

static analysis to extract key library usage patterns with a randomized search over the assignments of
fuzzer-generated values to API arguments. This work won a Best Paper Award (Industry Track)
at ESEC/FSE’19. In spite of these promising advances, there remain many open problems to tackle.

Fuzz testing more code. To fuzz a piece of code, we need an entry-point to that piece of code,
often called a test driver. Existing work, including FUDGE, tackles the problem of building test
drivers for libraries that expose a public API. However, this work requires examples of library usage
by client code, which may not exist for more general software systems. I will explore how we can look
at the context of a function within its own code base to generate drivers. Further, in many pieces
of software, the core functionality is deeply intertwined with the behavior of an external component.
In these cases, we need tools that help developers build models of these components, which capture
the components’ core test-relevant behavior. I will develop methods to automatically synthesize such
models, building on my work in input-output-example-based program synthesis.

Inferring and adjusting input structure specifications. To fuzz systems where the input
is not well-modeled by a byte sequence, developers spend a large amount of time writing generators,
grammars, or protobufs modeling the input structure. Existing work on input grammar inference, while
promising, is so far restricted to particular classes of parsing programs, or does not generalize enough.
I will expand this work to automated generator inference, which captures higher-level relationships in
inputs. Further, depending on the position of the program in its larger input ecosystem, the relevant
space of test inputs may vary. Building on my work on adapting generator distributions, I will develop
tools that help developers understand and edit a generator’s search space.

Coping with fuzzer-found bugs. Finally, fuzz testing has been most adopted in systems
which directly accept user input. In these systems, memory-corruption errors often lead to security
vulnerabilities, and so fuzzer-found bugs are viewed as important. This is not necessarily the case for,
for example, a compiler, where strange behavior on a particularly esoteric program may pose neither
a security risk nor ever be encountered by a user. I will develop specification languages that enable
developers to express their model of bug relevance. I will use my background in specification mining
to ensure these languages are expressive but understandable. Then, I will explore how to use the
specifications to not only filter bugs, but guide input generation towards relevant bugs.

Long Term: Rethinking “Test-Input Generation”

The utility of fuzz testing, and test-input generation more broadly, comes not just from the fact
that it points out bugs. The bug-inducing inputs are an important debugging aid, helping developers
grapple with the program’s control flow. But, the complexity of many modern software systems comes
from sources other than control flow. Deep learning applications are a particularly stark example—
much of their complexity comes from the model training process rather than the model code.

Throughout 2019, I interacted with students, practitioners, and thought leaders in machine learn-
ing to investigate core areas in which programming languages and software engineering research could
improve the machine learning development experience. This culminated in a talk I gave at the Work-
shop on ML Systems at SOSP’19. Amongst other findings, I discovered that tools for single-input
generation were not particularly compelling to ML developers, but that tools which could find groups
of similar inputs, all causing the same failure mode in the system, could help developers reason about
where their training went wrong. I will work on tools that automatically produce these artifacts, and
investigate which other artifacts would be most useful as debugging aids to developers.

Success in my research agenda will significantly reduce the costs of poor-quality software, both for
the users and maintainers of software. In particular, it will greatly reduce the time developers spend
finding and fixing bugs in code. This, in turn, will free developers to use their problem-solving skills
to find innovative solutions for the problems of tomorrow.

References Caroline Lemieux — Research Statement

1]

References

D. Babié¢, S. Bucur, Y. Chen, F. Ivancié¢, T. King, M. Kusano, C. Lemieux, L. Szekeres, and
W. Wang. FUDGE: Fuzz Driver Generation at Scale. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2019, pages 975-985, New York, NY, USA, 2019. Association
for Computing Machinery.

R. Bavishi, C. Lemieux, R. Fox, K. Sen, and I. Stoica. AutoPandas: Neural-Backed Generators
for Program Synthesis. Proc. ACM Program. Lang., 3(OOPSLA), Oct. 2019.

C. Lemieux, R. Padhye, K. Sen, and D. Song. PerfFuzz: Automatically Generating Pathological
Inputs. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, pages 254-265, New York, NY, USA, 2018. Association for Computing
Machinery.

C. Lemieux and K. Sen. FairFuzz: A Targeted Mutation Strategy for Increasing Greybox Fuzz
Testing Coverage. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, pages 475-485, New York, NY, USA, 2018. Association for
Computing Machinery.

R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon. Semantic Fuzzing with Zest.
ISSTA 2019, pages 329-340, New York, NY, USA, 2019. Association for Computing Machinery.

R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vijayakumar. FuzzFactory: Domain-Specific
Fuzzing with Waypoints. Proc. ACM Program. Lang., 3(OOPSLA), Oct. 2019.

S. Reddy, C. Lemieux, R. Padhye, and K. Sen. Quickly Generating Diverse Valid Test Inputs
with Reinforcement Learning. In Proceedings of the 42nd International Conference on Software
Engineering, ICSE 2020. IEEE, 2020.

